Cross-talk between cardiac muscle and coronary vasculature.
نویسندگان
چکیده
The cardiac muscle and the coronary vasculature are in close proximity to each other, and a two-way interaction, called cross-talk, exists. Here we focus on the mechanical aspects of cross-talk including the role of the extracellular matrix. Cardiac muscle affects the coronary vasculature. In diastole, the effect of the cardiac muscle on the coronary vasculature depends on the (changes in) muscle length but appears to be small. In systole, coronary artery inflow is impeded, or even reversed, and venous outflow is augmented. These systolic effects are explained by two mechanisms. The waterfall model and the intramyocardial pump model are based on an intramyocardial pressure, assumed to be proportional to ventricular pressure. They explain the global effects of contraction on coronary flow and the effects of contraction in the layers of the heart wall. The varying elastance model, the muscle shortening and thickening model, and the vascular deformation model are based on direct contact between muscles and vessels. They predict global effects as well as differences on flow in layers and flow heterogeneity due to contraction. The relative contributions of these two mechanisms depend on the wall layer (epi- or endocardial) and type of contraction (isovolumic or shortening). Intramyocardial pressure results from (local) muscle contraction and to what extent the interstitial cavity contracts isovolumically. This explains why small arterioles and venules do not collapse in systole. Coronary vasculature affects the cardiac muscle. In diastole, at physiological ventricular volumes, an increase in coronary perfusion pressure increases ventricular stiffness, but the effect is small. In systole, there are two mechanisms by which coronary perfusion affects cardiac contractility. Increased perfusion pressure increases microvascular volume, thereby opening stretch-activated ion channels, resulting in an increased intracellular Ca2+ transient, which is followed by an increase in Ca2+ sensitivity and higher muscle contractility (Gregg effect). Thickening of the shortening cardiac muscle takes place at the expense of the vascular volume, which causes build-up of intracellular pressure. The intracellular pressure counteracts the tension generated by the contractile apparatus, leading to lower net force. Therefore, cardiac muscle contraction is augmented when vascular emptying is facilitated. During autoregulation, the microvasculature is protected against volume changes, and the Gregg effect is negligible. However, the effect is present in the right ventricle, as well as in pathological conditions with ineffective autoregulation. The beneficial effect of vascular emptying may be reduced in the presence of a stenosis. Thus cardiac contraction affects vascular diameters thereby reducing coronary inflow and enhancing venous outflow. Emptying of the vasculature, however, enhances muscle contraction. The extracellular matrix exerts its effect mainly on cardiac properties rather than on the cross-talk between cardiac muscle and coronary circulation.
منابع مشابه
Regulation of human coronary vascular tone: further evidence must be sought before ruling out the direct role of ATP-sensitive potassium channels in regulation of coronary vasculature.
Further Evidence Must Be Sought Before Ruling Out the Direct Role of ATP-Sensitive Potassium Channels in Regulation of Coronary Vasculature To the Editor: The study by Kakkar et al in Circulation Research established that spontaneous coronary vasospasm in ATP-sensitive potassium channels (K ATP channels) mutant mice arises from a smooth-muscle extrinsic process.1 We congratulate the investigato...
متن کاملCross-talk between glycogen synthase kinase 3β (GSK3β) and p38MAPK regulates myocyte enhancer factor 2 (MEF2) activity in skeletal and cardiac muscle.
Characterizing the signaling network that controls MEF2 transcription factors is crucial for understanding skeletal and cardiac muscle gene expression. Glycogen synthase kinase 3β (GSK3β) regulates MEF2 activity indirectly through reciprocal regulation of p38MAPK. Cross-talk between GSK3β and p38MAPK regulates MEF2 activity in skeletal and cardiac muscle. Understanding cross-talk in the signali...
متن کاملDetection of Cardiac Artery Disease by Using the DCAD (b) Module
Introduction: In patients with cardiac artery disease, a myocardial perfusion scan, which is a non-invasive method, is utilized. This study is conducted to develop an advantageous software applicable to quantitative myocardial SPECT perfusion. Material and Methods: Each cross-section of the left ventricle was segmented by applying a fuzzy clustering method. After obtaining the myocardial skelet...
متن کاملHand Grip Strength and Myocardial Oxygen Consumption Index among Coronary Artery Bypass Grafting Patients
Background: Hand grip strength (HGS) is a reliable indicator of peripheral muscle strength. Although, numerous studies have investigated the strength of hand grip; little attention has been given to coronary artery disease (CAD) patients, exploring the relationship between HGS and myocardial oxygen consumption (MVO2) index. The current study aimed to evaluate the interaction between HGS and MVO...
متن کاملDecrease in coronary vascular volume in systole augments cardiac contraction.
Coronary arterial inflow is impeded and venous outflow is increased as a result of the decrease in coronary vascular volume due to cardiac contraction. We evaluated whether cardiac contraction is influenced by interfering with the changes of the coronary vascular volume over the heart cycle. Length-tension relationships were determined in Tyrode-perfused rat papillary muscle and when coronary v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological reviews
دوره 86 4 شماره
صفحات -
تاریخ انتشار 2006